PlantScreenTM Systems - Complete Solutions for Automated Phenotyping

Over the past few years we established phenotyping platforms all over the world in private industry and academical institutions.


PlantScreenTM Phenotyping Systems

Awlia M., Nigro A., Fajkus J., Schmöckel S.M., Negrão S., Santelia D., Trtílek M., Tester M., Julkowska M.M. and Panzarová K. (2016): High-throughput non-destructive phenotyping of traits contributing to salinity tolerance in Arabidopsis thaliana. Submitted Frontiers in Plant Sciences.

Bush MS, Pierrat O, Nibau C, Mikitova V, Zheng T, Corke FM, Vlachonasios K, Mayberry LK, Browning KS, Doonan JH0(2016). eIF4A RNA Helicase Associates with Cyclin-Dependent Protein Kinase A in Proliferating Cells and is Modulated by Phosphorylation[b]. Plant Physiol. 2016 Jul 7, DOI: 10.1104/pp.16.00435

Humplik J.F., Lazar D., Husickova A. and Spichal L. (2015): [b]Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses – a review. Plant Methods 11:29, doi:10.1186/s13007-015-0072-8.

Humplik J.F., Lazar D., Fürst, T., Husickova A., Hybl, M. and Spichal L. (2015): Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativum L.). Plant Methods 19;11:20, doi: 10.1186/s13007-015-0063-9

Brown T.B., Cheng R., Sirault R.R., Rungrat T., Murray K.D., Trtilek M., Furbank R.T., Badger M., Pogson B.J., and Borevitz J.O. (2014): TraitCapture: genomic and environment modelling of plant phenomic data. Current Opinion in Plant Biology 18: pp. 73-79.

Kinetic chlorophyll fluorescence Imaging

BOURDAIS G., BURDIAK P., GAUTHIER A., ET AL. (2015) Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress. PLoS Genet,. Volume 11. DOI:10.1371/journal.pgen.1005373

BEIKE A. K., LANG D., ZIMMER A. D., ET AL. (2015). Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. The New Phytologist. Volume 205, Pages 869-881. DOI:10.1111/nph.13004

VERCRUYSSEN L., TOGNETTI V. B., GONZALEZ N., ET AL. (2015). GROWTH REGULATING FACTOR5 Stimulates Arabidopsis Chloroplast Division, Photosynthesis, and Leaf Longevity. Plant Physiology. Volume 167, Pages 817-32. DOI: 10.1104/pp.114.256180

ALINIAEIFARD S. AND VAN MEETEREN U (2014). Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning. Journal of Experimental Botany. Volume 65, Pages 6529-6542. DOI:10.1093/jxb/eru370

BEELER S., LIU H., STADLER M., ET AL. (2014). Plastidial NAD-Dependent Malate Dehydrogenase Is Critical for Embryo Development and Heterotrophic Metabolism in Arabidopsis. Plant Physiology. Volume 164, Pages 1175–1190. DOI: 10.1104/pp.113.233866

GAWROŃSKI P, WITOŃ D, VASHUTINA K., ET AL. (2014). Mitogen-Activated Protein Kinase 4 Is a Salicylic Acid-Independent Regulator of Growth But Not of Photosynthesis in Arabidopsis. Molecular Plant. Volume 7, Pages 1151–1166. DOI:

HURA K., HURA T., GRZESIAK M. (2014). Function of the photosynthetic apparatus of oilseed winter rape under elicitation by Phoma lingam phytotoxins in relation to carotenoid and phenolic levels Acta Physiol Plant. Volume 36, Pages 295–305 DOI:10.1007/s11738-013-1410-y

JOHNSON, S. M., LIM F. L., FINKLER A., ET AL. (2014). Transcriptomic analysis of Sorghum bicolor resp onding to combined heat and drought stress[b]. BMC genomics.,Volume 15, Page 456. DOI: 10.1186/1471-2164-15-456

GAWROŃSKI P, GÓRECKA M, BEDERSKA M, ET AL. (2013). [b]Isochorismate synthase 1 is required for thylakoid organization, optimal plastoquinone redox status, and state transitions in Arabidopsis thaliana. Journal of Experimental Botany. Volume 64, Pages 3669-3679. DOI:10.1093/jxb/ert203

HIDA E. Z., ÇAKO V., BABANI F., ET AL. (2013). Photosyntetic activity imaging of stressed-pollution plants. International Journal of Ecosystems & Ecology Sciences. Volume. 3. Page 53.

HIRTH M., DIETZEL L., STEINER S., ET AL. (2013). Photosynthetic acclimation responses of maize seedlings grown under artificial laboratory light gradients mimicking natural canopy conditions. Frontiers in Plant Science. Volume 4, Page 334. DOI: 10.3389/fpls.2013.00334

LYSKA D., ENGELMANN K., MEIERHOFF K., ET AL. (2013). A Gateway-Based Vector System for Adaptive Expression and Flexible Tagging of Proteins in Arabidopsis. PLoS ONE. Volume 8. DOI:10.1371/journal.pone.0053787

NOVÁK J, PAVLŮ J, NOVÁK O, ET AL. (2013). High cytokinin levels induce a hypersensitive-like response in tobacco. Annals of Botany. Volume 112, Pages 41-55. DOI: 10.1093/aob/mct092

PINNOLA A., DALL’OSTO L., GEROTTO C ET AL. (2013) Zeaxanthin Binds to Light-Harvesting Complex Stress-Related Protein to Enhance Nonphotochemical Quenching in Physcomitrella patens. The Plant Cell. Volume 25, Pages 3519-3534. DOI:

WITUSZYŃSKA .W, GAŁĄZKA K., RUSACZONEK A., ET AL.(2013). Multivariable environmental conditions promote photosynthetic adaptation potential in Arabidopsis thaliana. J Plant Physiol. Volume 170, Pages 548-59. DOI: 10.1016/j.jplph.2012.11.016

Click HERE to view entire list of references for kinetic chlorophyll fluorescence imaging.


High-throughput screening tools for identification of traits contributing to salinity tolerance in Arabidopsis thaliana. Awlia M., Nigro A., Fajkus J., Trtílek M., Tester M., Julkowska M.M. and Panzarová K.

2nd COST meeting, 17-19th April. 2016 Copenhagen DN

Download pdf.

STP13, a sugar transporter contributing to salinity stress tolerance in Arabidopsis thaliana. Arianna Nigro, Klára Panzarová and Diana Santelia.

Phenotyping for photosynthesis and productivity, University of Essex, 4 - 6 August 2016, UK

Using automated high-throughput phenotyping to quantify and visualize early stress responses in plants. Panzarová K., Fajkus J., Benedikty Z. and Trtílek M.

EPPN Metting, 11-12th November 2015 Barcelona SP

Download pdf.

Application of high throughput phenotyping via PlantScreenTM System to study early plant stress responses to progressive drought stress. Šimková K., Madhavan S., Benedikty Z. , Santelia D. and Trtílek M.

Phenodays 29-31st October 2014, Beaune FR

Download pdf.

PlantScreenTM as a new tool for high throughput plant phenotyping. Šimková K., Suchomelova M., Benedikty Z. and Trtílek M.

Phenodays 10-12th October 2012, Wageningen NL

Download pdf.